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The interaction of shocks and defects in Lennard-Jones 
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WashingWm. DC, USA 

Received 9 June 1992, in final form 7 May 1993 

Abstract. We examine, using mmputaiianal molecular dynamics, shocks launched in two- 
dimensional clyrtalr by B flying plate. The interaction of the shock with variaus lanice defects 
is observed. and is seea to create sites of rapidly growing, thermalized. hot fluid-like phases 
included within the crystal lattice. We hypthesize that these fluid-like regions arc lhc sites of the 
initid chemical reactions leading U, detonation in energetic materials, and that crydlographic 
defeas therefore control the sensitivity of single-cryslal high explosives to shock-initiation. The 
compmims are carried out on the massively parallel C M - 2 0  using a parallelized version of 
&e MLG algorithm. 

1. Introduction 

This paper investigates, on the molecular scale, the propagation of vibrational disturbances 
through various two-dimensional lattices, using the techniques of computational non- 
equilibrium molecular dynamics. These disturbances will be referred to as ‘shocks’, as is 
common in the literature, because, although they have a finite width and a definite structure, 
they are thought to be the microscopic analogues of the travelling discontinuities that are 
defined as shocks in the macroscopic domain of continuum mechanics. 

The motivation behind the work reported in this paper is the desire to understand some 
of the peculiar propenies of the initiation and propagation of detonations in solid chemical 
explosives. A detonation, as the term is usually understood in these contexts, is a physico- 
chemical process with a characteristic structure [I]. This structure consists, in a solid, 
liquid or gas, of a shock wave or some other localized wveling disturbance, followed by 
an associated reaction front, which separates material that has participated in a chemical 
reaction from material that is not yet reacted. The association between these two traveling 
interfaces, mediated by the ‘induction zone’ of (usually) compressed saessed unreacted 
material between them, is a complex interdependence whose nature has been the subject of 
many investigations, a few of which we shall discuss below. For now we should merely 
point out that, on the one hand, the shock is the cause of the reaction front, for in its passage 
it creates the conditions which lead to a particular series of reactions, while on the other 
hand the exothermic reaction front maintains and accelerates the shock by supplying kinetic 
and thermal energy. 

In the fluid phases, those properties governing the nature of the detonation process are 
the chemical composition of the material along with its intensive thermodynamic variables 
and, sometimes, the details of the method used to initiate the detonation. In a solid, even 
when all of these quantities are held constant, there may still be significant variability in 
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the responses of a series of samples. For example, in an experiment in which crystals 
are exploded by dropping a weight on them, the variability may take the form of a wide 
range of initial heights necessary for detonation in apparently identical samples. A possible 
source of this variable response might be some unknown and unconvolled variation in 
the experimental conditions, presenting different samples with significandy different 
conditions, combined with an extreme sensitivity to initial conditions in the system. But it 
must be recognized that a sample of solid material, unlike a fluid, is characterized not 
only by its chemical composition and its thermodynamic State. The p&cular Spatial 
arrangement of molecules constituting each sample makes them all unique. The fact that 
the shock, solitary compressional wave or other disturbance taking part in the SWCtUre Of 
the detonation pmess is a mechanical mode of vibration supported by the molecular lattice, 
whose nature is completely dependent on the detailed structure of that lattice, implies that 
the spatial mangement of molecules must intluence the detonation process. This much is 
uncontroversial. What may be more surprising is the suggestion [21 investigated here, that 
certain minute changes in the molecular arrangement involving the locations of just a few 
molecules, may have a large, even determining, effect on a macroscopic detonation. This 
suggestion gains plausibility if one considers that the actual thickness of the shock front may 
be only a few lattice planes [31. Therefore the Iransfer of kinetic energy from a molecule 
to its neighbours in the direction of propagation involves the participation of only a few 
molecules (along the wavevector direction) in a particular vibrational mode at any one time. 

One traditional theoretical approach to understanding detonations, and the initiation of a 
detonation by a shock wave, involves a description in tems of thermodynamic variables that 
are related by an equation of state for the matwial [l]. The passage of the shock heats the 
material through adiabatic compression; if the compression is great enough, then the local 
temperature will rise to a threshold required to initiate the chemical reactions, and a reaction 
front will form behind the shock. However, for understanding the detailed microscopic 
name of detonations in a solid, the traditional theories may not be appropriate. At the scale 
of intermolecular distances, the usefulness of thermodynamic variables is problematic, and at 
timescales shorter than nanoseconds, relations built upon the assumption of thermodynamic 
equilibrium require special scrutiny (the rapid approach to thermal equilibrium under some 
circumstances is discussed further in section 3.) We should point out that a description 
based on classical mechanics, such as that employed here, must also be insufficient, but can 
fonn the basis for more accurate quantum or semi-classical descriptions. 

In this paper we examine thc point of view, championed by Walker 14-71, thal a shock 
in a solid initiates detonation through the mechanical generation of scission forces on the 
molecules comprising the solid, breaking chemical bonds, creating a dishibution of free 
radicals, and supplying the kinetic energy required to initiate reaction. In the light of this 
picture of the detonation process, we investigate the interaction of the shock front with the 
lattice structure, using numerical molecular dynamics. We are particularly interested in the 
effects of certain types of lattice defects on the shock initiation mechanism. We include 
no chemistry in OUT model; the ‘molecules’ are point particles interacting through Lennard- 
Jones potentials. Hence OUT current connection to the detonation problem is the exploration 
of how the conditions leading to the breaking of bonds and the subsequent formation of 
new molecules are established. The following stage. of reaction and shock acceleration, will 
be treated in a subsequent paper, which will report on simulations employing a chemistry 
model. 

There have been reported a number of interesting molecular dynamics calculations that 
bear, in one way or another, on the problem of the shock initiation of detonations in 
solids. Karo and co-workers [SI simulakd a smal l  lattice of approximately one hundred 
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molecules arranged in a two-dimensional squarmymmehic Lattice, interacting through 
either ‘endothermic’ Morse potentials or ‘exothermic’ polynomial potentials. A shock was 
launched by simulating a flying plate consisting of a smaller lattice of identical COnsmCtiOn 
to the main lattice. (This is quite similar to our method of shock launching in this paper.) 
The main conclusions were that the shock was quite narrow on the atomic scale, that the 
temperalure of the lattice was unimportant, and that the free surface at the end of the 
finite lattice was a crucial feature, as the shock’s interaction with this surface resulted in 
a spalling off of a large chunk of the crystal. The behaviour subsequent to the spallimg 
depended on which potential was in use. With the endothermic potential there was little 
interesting activity after the separation of the chunk, but with the exothermic potential a 
violent reorganization of the lattice occurred. 

While there is little reason to question the reliability of the general character of the 
results reported in these seminal papers, especially the importance of free surfaces, there 
are several numerical issues that should be discussed. Unfomnately, issues of convergence 
and accuracy are not treated in these references: conserved quantities are not mentioned, 
nor are the methods of integration. Instead of physically faithful additive potentials, the 
authors employ two different Erst- and second-neighbour potentials chosen to make the 
initial lattice stable. In addition, as the lattice undergoes its nahual distortion and molecules 
acquire different sets of close neighbours, they are not allowed to interact with these new 
neighbours. Instead, the original table of bonds is used throughout the calculation. As 
the authors point out, this leads at times to molecules passing through each other without 
interaction. (Indeed, this is a statistical possibility, albeit of low liielihood [9], with the 
method we employ, as discussed below.) One of our goals in the wok reported here is to 
discover which of these mutts survive the application of more modem numerical methods 
applied to somewhat more realistic simulations. 

Later [IO], using the Same numerical method, these authors studied a shock in a lattice 
interrupted by a large gap consisting of a region with no molecules. As before, they observed 
spall from the free surface, with this time the spahi  molecules reaching the second free 
surface beyond the gap and launching a second shock. This was an attempt to simulate 
efficiently the behaviour of a me void in a crystal, which would be surrounded by the 
lattice on all sides and make up a smal l  fraction of the lattice. As we discuss in section 3, 
Our  simulations of small m e  voids included in a large lattice lead to somewhat different 
conclusions from simulations employing a gap. 

In more recent related work, these authors and others [ll-131 embed a computational 
surrogate for a polyatomic molecule into a simple host lattice, and show how the passage of 
the shock pumps energy directly into some of the vibrational modes of the molecule. This 
pumping could lead directly to bond scission in a real material, in a region that is definitely 
not ergodic, and where no thermodynamic temperature can be dehed. 

Also relevant is the work of Tsai and Trevino [I41 on a diatomic pmfect crystal in the 
form of a long filament with a small cross section. Exothermic bond breaking was simulated 
through the use of bound and free compound Morse potentials, and the shock was formed 
by heating the first six crystal planes. The initial temperature of their lattice was set at just 
below the threshold of spontaneous dissociation; the heating caused dissociation directly, 
the reaction spread by thermal conduction and drove a shock wave into the fdatnent. They 
kept track of the stresses and examined the partition of kinetic energy in the induction zone, 
concluding that thermal equilibrium was not reached before dissociation took place. There 
is no discussion of numerical accuracy or the treatment of distant neighbours, although 
presumably the expediency of imposing a cutoff distance on the potentials, as adopted in a 
previous paper [151, was used here as well. 
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Several afithors have demonstrated that the typical quasi-steady detonation smcture 
described above is predicted by molecular dynamics models, with the exothermic reactive 
process modelled either by classical potentials acting between diatomic bonds [9,161 or by 
a m m  elaborate procedure that captures some of the features of the quantum chemical 
processes involved [17-211. All of these calculations involve perfect crystals, and although 
some of them examine the effects of lattice geomeby, shock direction relative to lattice 
symmehy and so on, none of them deal with the action of crystallographic defects. A 
recent exception is the work of Maffi-e and Peyrard 1221, which deals with the ability of 
a developed detonation structure to traverse grain boundaries, voids and other localized 
defects. However, they do not deal with the effect of defects in the transition from a pure 
shock to a detonation. Another exception is the recent work of Tsai 1231. 

2. Method 

Our model system consists of an a n a y  of point particles, each with a specified initial 
position and velocity vector, arranged in a two-dimensional space with either periodic or 
free boundary conditions. The algorithms were chosen for their convenience and efficiency 
on the computer used, the Connection Machine CM-200, which consists of a large number 
(4096,8192 or 16384, depending on configuration) of processors~ each with its own set of 
locally stored data, updated in parallel according to instructions from a conaoUing ‘front- 
end’ computer. Efficiency consists here largely of maximizing the proportion of code that 
executes in parallel, which entaiJs minimizing the manipulation of front-end (global) data 
and maintaining careful control over the pattern of communication among processors. 

Forces between particles were represented by Lennard-Jones potentials. The solution 
of the complete N-body problem was not atlempted; rather, the short-range nature of the 
Lennard-Jones potential was exploited to Limit the distance over which interactions had to be 
computed. The particle data were dishibuted onto a dam structure known as the monotonic 
Lagrangian grid (MLG) [%.I. This is an object uacking and sorting technique where each 
particle is associated with a pair of integer indices i and j ,  and the assignment is ordered such 
that the coordinate x increases monotonically with i, and y increases monotonically with 
j .  Monotonicity was enforced after each update in particle positions by a parallel version 
of the swapping routine described in [%I. The advantage of this method is that. at each 
timestep, a particle’s neighbours can be identilied quickly by cycling over a predetermined 
region of i-j space, rather than by searching through coordinate space with an expensive 
comparison of particle separations. 

Each physical processor on the Connection Machine can be divided, in software, into as 
many vfiual processors as memory will allow. When we refer to a ‘processor’ from here 
on, lhis should be takcn to mean ’virtual processor’. One particle was associated with each 
processor, which stored the particle’s position and velocity coordinates, as well as any other 
i n f o d o n  unique to that particle. We also stored a near-neighbours template [%I in each 
processor; this is an array that stores the position information for each panicle’s neighbours 
in grid-index space. Once the template is filled, the total force vector acting on each particle 
and the update in position is computed for all particles entirely in parallel, with no additional 
interprocessor communication needed for the =st of the timestep. After each regeneration of 
the M E  by the swapping routine, the template is rebuilt; thus each processor-particle always 
has a locally stored updated litst of the coordinates of its near neighbours. The use of the 
M I X ;  is one of several available efficient schemes for replacing a time-consuming search for 
thc spatiaUy proximate neighbows of each particle at every timestep. However, as alluded 
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to in the section 1, its use can lead occasionally (but infrequently) to the problem of missed 
near neighbours [XI, particles that are spatially close but not included in the neighbour 
template. In our calculations near-misses can always be detected by direct inspection of 
particle trajectories or by a failure of energy conservation or repeatability. In such cases 
we redo the calculation with a larger template. Thus the template size is @sated like the 
computational timestep, both of which are adjusted to keep the calculations stable and 
accurate. 

The procedure for filling up the template at each timestep is an important determinant of 
the overall efficiency of the algorithm. Interprocessor communication between neighbouring 
processors happens to be far more ef6cient than between more distant processors, so we fill 
the template using a sequence of coordinated data moves between neighbouring processors 
only. The total number of these parallel move operations is equal to one less than the 
total number of elements in the template array; therefore the total time required to 6ll 
the template depends on its size, not on the number of particles (assuming that the ratio 
of virtual processors to physical processors remains cons-mt). 
sequence is diagrammed schematically in figure 1. 

- - -> SCP, - sm, 

pan of the communication 

Figure 1. The two initial steps 

o p d o n s :  the simplified, case 
of a two-neighbur template is 
shown BS a0 iUustrative example, 
and the templates for six of the 
pmiicles are included. EBch 
processor’s template is seeded at 
ifs m m  with its own particle’s 
data: the mows represent the 

template entry to the appropriate 
template entry in a neighbouring 
pmessor. 

in a sequence of panuel move 

copying of psrtide data fmm 1 

As the studies described in this paper were being carried out, the computer hardware and 
system software being used was evolving. Fortunately, only one of these changes needs to 
be discussed here: initially, the Connection Machines that were used for these calculations 
were equipped with floating-point accelerators that operated only on 32-bit numbers; more 
recently, we were provided with 64-bit accelerators. 

For reasonable efficiency, it is necessary to restrict the precision of floating point 
numbers to the word size of the accelerator. Therefore, some of the results reported here 
were performed with 32-bit arithmetic, some with 64-bit arithmetic, and some of the 3 2  
bit calculations were redone with @-bits (double precision) when that became available. 
The small differences we observed in particle data between the two precisions was not 
significant enough to affect our conclusions. The chief advantage to the greater precision 
will be for future calculations, which we will be able to cany out for longer times before 
the accumulated errors become unacceptable. 

We found that single-precision arithmetic limited the accuracy with which energy 
can be conserved, and made the extra accuracy of higher-order time integration methods 
superEuous, and their use needlessly timeconsuming. Therefore some of the results reported 



6362 L Phillips er al 

here were calculated With the simple explicit Euler method. We were able to achieve 
stabiity with this method using a reasonable timestep. The consequence of the limitation 
of precision is that energy is conserved only to approximately one per Cent in the 32-bit 
calculations. With double-precision arithmetic, it became advantageous Io use a higher- 
order integrator. We have used both the leapfrog method (describd in several places, for 
instance [25]) and the third-order Verlet formula 1261 Combined with a velocity Corrector 
described by Beeman [27]. The advantage of this method (described on p 138 of [271) is 
that the velocities do not have to be permanently stored, and need only be calculated when 
they are required for a data dump or a chock of the binetic energy. Our algorithm with 
these integrators can conserve energy to one part in 104, in actual calculations. 

we have performed calculations with three different system sizes, ‘small’ grids of 2” or 
2” molecules diseibuted among an equal number of physical processors, and a ‘large’ @id 
of 2Is  molecules distributed among 214 physical processors. which is the largest processor 
set avail;tble to us. (our original machine, with [WO banks of 2’* processors, was replaced 
partway Ihrough this project with one of two banks of 2” processors.) ”his ‘large’ system 
of particles is not very large by current standards of molecular dynamics simulation, but is 
adequate Io demonstrate the physical processes of interest to us. 

In both cases each molecule was assigned its own virtual processor. All else being 
equal, the large grid should lake approximately twice as long to simulate as the small grids, 
because it is the ratio of virmal to physical processors that is significant. On the small 
grids, with five neighbours in the template in each direction, the calculation took 0.67s 
per timestep. On the large @i4 a five-neighbour calculation took 1.0s per timestep and a 
seven-neighbour calculation took 2.0s per timestep. We have verified several of our mns 
with equivalent calculations on the NRL Cray X-MP, using a well vectorized code. With 
4096 molecules, a five-neighbour template takes 2-2.4s per timestep; with larger system 
sizes, the disparity between the two architectures can be expected to grow dramatically 1281. 

3. Results 

It is difficult to compare directly the various molecular dynamics simulations that can be 
found in the Iiterature, due to the varying sets of units employed by different authors, along 
with differences in potential parameters, lattice spacing, initial conditions and so on, each 
of which can have a non-obvious effect on the evolution of the system. Close comparison 
becomes impossible when not enough paramems are supplied in ordw Io characterize the 
dynamics of the system. In certain fields it is common to avoid these problems by describing 
the physical system with a set of dimensionless numbers. Although the large number 
of parameters characterizing a molecular system makes a simple resort to dimensionless 
numbers impossible, it may be useful to introduce one such number, which can be used 10 
organize the results concerning the type of molecular dynamics con6guration used in this 

We have an array of molecules with forces between them derived from a Lewd-Jones 
paper. 

potential 

so the force, F, is given by 
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by Newton's equation of motion. In the above two equations r is the distance from 
the molecule, m is the molecular mass, r is time, and Q and E are the two parameters 
characterizing the potential. In order to make the equation of motion dimensio-s, we 
must introduce scales appropriate to a system excited by a flying plate: d is the interparticle 
spacing, V, is the plate velocity, r = d /  V,, p is the particle mass, and C = pd2/r2 is the 
energy unit. 

After making the substiations 

r -+ rid E -+ E% I + r't. m + m'p U + u r d  

and removing the primes from the now dimensionless variables, the equation of motion 
becomes 

where 

VP2F .c= - 
E 

emerges as a new dimensionless number, apparently relating the kinetic energy of the 
impacting molecules to the binding energy of the intermolecular potential. 

In all of the calculations presented here, E = 0.0223, U = 0.891, V, = 2.0, d = 1.0, and 
p = 4.0, giving L = 727.3. It may help put things into context for some readers if we Scale 
our variables to the values appropriate to solid argon, a substance commonly discussed In 
this case the plate velocity scales to 4258 m s-', one time unit is 0.88 x s, and one 
distance unit is 3.8 A. From here on we shall use the dimensionless units. 

Figure 2 shows a sequence of molecular configurations as a plak-launched shock 
encounters a pair of voids in a system with periodic boundaries transverse to the shock, 
producing a great deal of disorder. The same initial conditions in a system without the 
voids lead to the shock traversing the crystal intact and leaving it undisturbed. However, 
this behaviour is observed in the inherently unstable square lattice used for this run only at 
near-zero initial temperatures, in conbast with the stable hexagonal lattice used in other nms 
described beIow. We see here that the voids disturb the coherency of the shock, transforming 
its organized x-directed (horizontal) motions into a thermalized two-dimensional (x-y) 
motion: beyond the defects, the shock continues as several disconnected pieces. 

The progress of the shock can perhaps be more clearly visualized in figure 3, showing 
profiles of the horizontal velocity along different lies through the crystal. That these 
disordered regions are actually 'thermalized' can be seen by looking at the speed distribution 
of the molecules. in the crystal. Figure 4 is a series of speed histograms corresponding to 
the calculation iUustrated in figure 2; superimposed on each histogram plot is the two- 
dimensional Maxwell-Boltzman distribution with a temperature derived from the average 
kinetic energy of all the particles. At early times we can see the speed disuibution dominated 
by two values, the near-zero speed of the particles locked into the near-zero temperature 
lattice configuration, and the highest speed, equal to the plate velocity. As time advances 
we can see the velocity distribution filling in, but remaining non-Maxwellian. In the last 
frame of the figure we have plotted the distribution of a subset of the system at I = 15 (the 
configuration at this time is shown in figure 14). the subset consisting of the particles in 
the chaotic region delimited by x = 15 and x = 42. The superimposed Maxwell-Boll" 
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Flgure2. Particle positions for4k paticlicles in twodimendms. withperiodic bwndarymdit im 
in the y direction. A 'aykg plate' impinges fran the lek and has just  made mnlacf at f = 3; 
the resulting shock, pmpagbg in the x direCti00. interads with two rectangular voids. 
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(c) Y Y  R l  I : 40.0. 1 i 8.0 
**p 

Figure 3. (0) A frame f m  the lcularion illustmIed 
in figure 2, with WO horizontal hcs  drawn to indicate 
cross seuions at y = 60 and y = 40. (b) Profile oi the 
I component of particle velocity at y = 60. showing 
the stmclure of the shock and the relative quiescence 
of Ihe m ~ i m  of the lattice thmugb which the shock has 

the annplete lransfer of shock front energ). to chaotic 
motion resulting from the shock-void interanion. 

passed. (c) Pmfile of the x velocity at y = 40, sbowia$ 

curve cor res~nds  to the kinetic temperature of the subset of particles under consideration; 
clearly this region of particles has rapidly attained a thermal equilibrium, indicating that 
the collisionality in the chaotic region is high. The creation of hot spots at the site of 
voids in a lattice under compression has also been seen in m n t  simulations by Tsai [23]. 
These disordered regions also have the property of being at a slightly higher density than 
the equilibrium lattice, as can be seen in the density plot of figure 6. 

A similar calculation can be seen in figure 5, with the square lattice replaced by a 
hexagonal lattice. In this case, also, the small void has been replaced by a single vacancy. 
We can see here that even in a lattice geomelry with a higher binding energy, and with, unlike 
the square lattice, non-linear stabiity against moderate temperatures, a small imperfection 
creaks a large disruption. 

It is important to keep in mind that the 'voids' (and hot spots) discussed here, and in 
related papers, are at a vastly different length scale from the voids (and hot spots) that can 
currently be observed in experiments, which are typically in the micron range, which is a 
huge expanse for a molecular dynamics calculation. As simulation length scales become 
larger, and laboratov observations become more minute, perhaps eventually there will be 
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( a )  Speed distribution at t = 3.0 (6) Speed distribution at t P 7.5 
24000 . L ,  L .  L .  , . , , , , , , . ~ . 

(c) Speed distribution at t - 10.5 ( d )  Speed distribution at t ., 15.0 
20000 10000 

c 

2 .s 
B loooo w w 

E 
6 x 5000 

$ 3 

0 0 
0 1 2 0 1 2 

Particle speed Particle speed 

(e )  Subset distribution at t - 15.0 

I i 

Figure 4 Velocity distributim histograms with 
superimposed equilibrium distributions, for the same 
ealcuiatim illustrated in B p r c  2 Parts (a).@ iilustntc 
the filling-m of the initidly doubly peaked distrihtion 
due to the development of chaotic m d m .  and pprt 
(e) shows that the chaotic regim has formed L aub- 
pcplatim with ils own equilibrium distribuhbn 

1 
Panicle speed 

2 
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Figure 5. A void in B hexagmal lanice interacting with a 
shock launched by a flying plate. 

Figure 6. Smmthed density plot correspmding 10 the same 
calculation illustrated in figure 2. at 1 = 13.5. Increasing 
bnghtners indicates increasing density. The three bright 
patches near the right-hand side of the tigum correspond to 
the cmpressim at the location of lhe void-intempted shock. 

a closer connection between molecular dynamics and experiments. 
The interaction of a shock front with a mass defect in square and hexagonal lattices C a n  

be seen in figures 7 and 8, both showing the effect of the inclusion of a molecule with a 
50% mass excess. The effects are similar to but weaker than those caused by voids. 

We have performed a series of experiments on systems identical to the ones shown in 
the figures, but at various temperatures and intermolecular potential well depths. At very 
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Figure 7. A mass &fed in a square lahia inlelacting with 
a shock launched by a Eying plafe. The black s q w  i s  a 
moleculc with a mass excess or 50%. 

small temperatures the perfect square lattice becomes unstable when struck by the plate, and 
begms to dissociate. This is me even if the potential well depth is increased by a factor of 
45. The hexagonal lattice, however, is stable to impact by the flying plate over a wide range 
of temperatures, although at higher t e m p e m  the shock front is less sharply defined. The 
effects of the various types of hexagonal lattice defects, and their relative imporlance, is 
not affected by temperature, but is strongly dependent on the intermolecular potential well 
depth. For a given shock strength and defect type, it appears that it is possible to increase 
the well depth to a point at which the lattice remains stable. 

It is useful to quantify the concept of the strength of the effect of different types of lanice 
defects or their efficacy in disrupting the crystal when interacting with a shock. For this 
purpose we have defined two ’disruption factors’, to be used with the two lattice symmetries. 
The disruption factas should be defined in such a way that the elastic deformation of the 
lattice due to the shock itself does not make a contribution. Therefore the disruption factors 
will be zero for the case of a shock traversing a defect-free crystal that remains intact. 

We can define disruption factors that satisfy these criteria as follows. Fa the square 
lattice the angular positions of the four nearest neighbours ( 0 ~ , 3 , 4 )  are found The disruption 
factor, x .  for each particle is de6ned as 
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Figure 8. A mass &fed in a hexagonal lanice interaaing 
with a shcck launched by a flying plate. The black square 
is a molecule with a mass excess of 5W. 

where the summation is over near neighbours. For a compression or rarefaction of the 
lattice due to the propagation of a shock along one of the principal crystal axes, the angular 
positions of the near neighbours should remain 0, in/Z, and n resulting in ,y = 0. 

The hexagonal lattice disruption factor must be defined in a slightly different manner. 
The angular positions of the six near neighbours of each particle (&+a) change as the shock 
propagates through the lattice. In this case the angular positions of the six near neighbours 
are first found. The neighbours in the lower half-plane are reflected into the upper half- 
plane. The near neighbours are then sorted into order of increasing angle. The disruption 
factor for the hexagonal lattice is defined as 

x = sinel + sin(& - &) + sin(& - 0,) + sin&. 

In the case of a shock passing through a hexagonal lattice causing only a compression or 
rarefaction along the shock direction, 01 and 06 should remain 0 and n, respectively. The 
angles & and €J2 should be equal and 05 and 0, should be equal. As in the square lattice, a 
zero disruption is calculated. 

The total disruption of the lattice is calculated by summing the per-particle disruption 
factor over all particles. The values of the total disruption correlate well with the apparent 
disruption found by visual inspection of the particle positions. Figures 9 and 10 display 
x as a function of time for an assorrment of crystal defecs, for the square. and hexagonal 
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lattices respectively. The greater importance of voids over mass defects is obvious, as is the 
unstable growth of the disordered region after the passage of the shock. Figure 9 also shows 
that the fastest growing disruption factor is found for an interstitial inclusion in a square 
lattice. The spatial comiguration for such a system is shown in figure 11. The closer packed 
hexagonal lattice does no1 provide an equilibrium position for an interstitial inclusion. 

800 4 

600 
...... m. 1.5 
--. m' = 0.875 - m. = 1.t25 

m. = 0.9315 

'1 
, .rS- 

I I I I 
0 2 4 6 8 

Figure 10. The disruptiai factor as a funclkm of h e .  
for mass dcfects of scvenl values and for a vacancy in 
a hexagonal lanicc. 

t 
Figure 9. Toe d i s l u ~ c n  faclor (see text) ps a function 
of h e .  for several 'ypes of &fear in a square lattice. 

Another useful diagnostic summary of the state of the system is a histogram distribution 
of the near-neighbour angular positions, such as that shown in figure 12. This figure shows 
the evolution of the angular dishibution for the case of a vacancy in a square lattice. 
The additional peaks which develop in the histogram distributions indicate that the lattice 
is beginning to locally undergo a transition from a square. to a hexagonal state. For a 
hexagonal lattice formed by the displacement of every other column of atoms perpendicular 
to the shock direction together with a compression along the shock direction, the near- 
neighbour angular positions should be f n / 6 ,  &n/2 and f5n/6. The peaks are not found 
exactly at these angles since the lattice has a square. structure a short distance from the 
region of disturbance, resulting in a distorted hexagonal state. 

Figure 13 shows a calculation similar to that shown in figure 2, but in a y-periodic 
system of 32k molecules, with a distribution of voids whose positions, shapes and sizes 
(ranging from single-site vacancies to voids of nine molecules) are determined by a random 
number generator. This is a first attempt at simulating a system approximating a part of 
a real crystal, with its natural distribution of defects (although by necessity only including 
molecular-scale features). The basic process shown in figure 2 is repeated here: each void, 
including even the single-site vacancies, becomes the seed of a rapidly growing region of 
thermalized disorder, which causes a break in the shock front due to the work done on 
lhe voids. The shock becomes more tenuous as its organized x-momentum is equilibrated 
and, in the absence of energy available from chemical reactions, eventually dies out In the 
second half of the figure, at r = 11, the leading edge of the remains of the shock front can 
be seen at x = 50. Note that for clarity only a portion of the system, which extends to 
x = 260, is shown. 
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Figure 11. An intentirial inclusion in a square lanice. &er 
the passage of a plate-launched shock. 

.* 0 2 

Figure U. 'The evolutiOn of lhc distribu- 
tion of intermolecular bond angles B in 
a square lattice a thc shock fmnt pnssen 
Uuough a lanice vacancy. The set of s e e  
on- pealrn that emerge in the distibu- 
lion show the tendency of the lattice to 
rela to a locally hexagonal om6gtua- 
lion. 

The spherically symmetric potential leads to two possible periodic equilibrium lattice 
symmetries: square and hexagonal. As can be seen in figure 14, the agitation created by 
the void collapse has provided a section of the lattice the opportunity to relax to the other 
periodic state available to i t  we see here and in various other runs the emergence of a 
localized hexagonal region. We use the term 'relax' above because the hexagonal state is 
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actually of slightly smaller potential energy. Accompanying this relaxation, therefore, must 
be the generation of some extra kinetic energy. A somewhat similar shock-induced phase 
bansition was shown in [lo], where a potential with two minima acted between molecules. 

X 

Figure U. Particle p i t ions  in a 
32k particle system. with a m d m  
distribution of voids. A Eying plate 
har launched a shock fmm the left  
Only a portion (s 75k particles) of 
the tdal system is shown. 

PRRTIELE POSITIONS RI 114 : 1.500Em 

Figure 14. A frame fm a later time. f = 15, 
in the calculation illustrated in figure 2, showing the 
mergence of an hexagmal phase embfdded in the 
predominant square-symmetric crystal. A bm has teen 
drawn amund the hexagonal region 

The assertion has been made [IO] that in order to understand the shock-void interaction it 
is not necessary to place the void interior to the crystal but, in the interests of computational 
efficiency (which in this context means reducing the number of molecules that need to be 
uacked), it is sufficient to examine the interaction of the shock with a gap in the lattice. 
In figure 15 we show the results of a calculation in every way identical with that shown 
in figure 2, except that the two voids in figure 2 have been replaced with a gap extending 
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Figure 15. A sequence of particle positian plots similar 
to hose in figure 2, but with the two voids replaced by a 
roOtinuous gap. Note that the rho& jumps the gap and 
coolhues to propagate. leaving the lattice undisturbed. 
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across the entire crystal; the gap begins at the same x position as the leading edges of 
the voids, and has the same width. We can see from figure 15 that the shock succeeds in 
traversing the gap while maintaining its coherency, and procceds down the lattice, leaving 
it undisturbed. Thus we see an essential physical difference between a gap and an included 
void: the presence of neighbour molecules msverse to the direction of progress of the 
shock causes energy to be removed from the shock and distributed among greater degrees 
of freedom, leading to a thermalized region. A related observation has recently been made 
by Maffre and Peyrard [D], who demonsmed the ability of a shock-reaction front smcture 
to traverse a void in a lattice. 

In addition to various systems of voids, we have simulated the encounter of a shock 
with a type of extended defect resembling a grain boundary; the evolution of the system 
is shown in figure 16, which contains a sequence of plots of the particle positions in a 
y-periodic system. As before, a shock was launched by a flying plate travelling to the right 
with V, = 2. At r = 4, the shock is beginning its mversal to the right, and the grain 
boundary can be seen initially at x =-%.S. At f = 7, the shock is passing over the defect, 
which is compressed slightly and, due to the compression of neighbouring lattice planes, 
has been displaced slightly to x = 26. At f = 10 the shock has passed through the defect, 
leaving it and the surrounding lattice undisturbed, except for coherent displacements in the 
x direction, which place the defect at x = 27. Counting from the left, the grain boundary 
separates the 20th bom the 21st lattice plane, and it does not shift relative D the lattice. 
It seems likely, if these two-dimensional results are at all indicative of behaviour in three 
dimensions, that grain boundaries are of comparatively little importance in causing a lattice 
disruption, compared with voids. 

There can be observed in some of the position plots a slight lack of symmehy in particle 
configurations where perfect symmeay might be expected, even before symmetry breaking 
effects have a chance to propagate in from the boundaries. The two causes for this are 
the small random thermal motions in the initial conditions, which are always present to 
some extent and are never symmehic, and the accumulated roundoff errors in the Boating 
point arithmetic, which after a few thousand timesteps may cause a detectable breaking of 
symmeuy even at zero temperature. 

4. Conclusions 

When a shock, sufficiently weak that it is able to traverse a perfect crystal without 
permanently disturbing the configuration of its lattice, encounters a void in the lattice, the 
void becomes the site of a rapidly growing thermalized hot fluid-like phase characterized 
by a high density and a high degree of collisionality. These characteristics should be 
conducive to the onset of chemical reactions and, we suspect it is in these regions that 
the reactions leading to the development of a shock-detonation structure begin. It seems 
probable, therefore, that the void dishibution in the lattice is an important factor conmlling 
the sensitivity to shock-initiation and the character of the subsequent detonation front 
development. A perfect crystal should he relatively insensitive. It is possible that in three 
dimensions, other types of defects will be seen to be equally important, but that will be 
mated in a subsequent paper. 

As discussed above, in order to concentrate on the narrowly defined problem of shocks 
and defects in molecular crystals, with as few complications as possible, we have deferred 
including a model of the chemical bond and simulated the behaviour of moderately large 
systems of indivisible molecules with spherically symmetrical potentialr. This approach 
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Figure 16. Panicle position plot of a shock pmgressing Uuwgh a 
linear defect, a vertical grain bamdary initially ai x = 24.5. At 
1 = 4. the distuhanoe has not yet reached the defcd At 1 = 7, the 
disturbance i s  parsing lhmugh Be defed, and at 1 = 10 it has passed 
beyond the defect, leaving it UndisWrbCd 
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has the advantage that our results are independent of the details of any particular model 
of detonation chemistry or intramolecular behaviour, several of which are referenced in 
section 1. 

Although we have been able to resolve several issues concerning the importance of 
defects, there are some remaining ambiguities that will not be resolved until we include 
polyatomic molecules in the simulations. These have their counterpart in the uncertainties 
plaguing our knowledge of the bond scission process in a shocked crystal laaice. If the 
polyatomic bonds are broken in the shocked region, due to direct energy transfer from the 
shock to vibrational modes of the molecules, then the scission forces discussed above have 
little relevance, because they occur in the disordered regions behind the shock. In this 
case the importance of the defects is in the thermalization and mixing, which NU provide 
enhanced opportunities for the free radicals, created in the shocked region, to recombine. 
Of particular relevance here is the observation that thermal equilibrium is established in the 
disordered region close behind the shock, on a very fast timescale, implying that equilibrium 
equations of state may be relevant after a l l  U) the detonation process. If the chemical bonds 
are not broken directly by the passing shock, then the scission forces may be responsible 
for bond stretching and breaking in the disordered region, where conditions prevail that will 
enhance the subsequent reactivity. The truth is that neither computational nor theoretical 
WMk to date. is sufficient to resolve these uncertainties. We hope that these questions can 
be addressed in the next generation of simulations, involving both defects and chemical 
reactions in polyatomic crystal lattices large enough to capture their interaction. 
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