IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

The interaction of shocks and defects in Lennard-Jones crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys.: Condens. Matter 5 6357
(http://iopscience.iop.org/0953-8984/5/35/003)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 12/05/2010 at 14:22

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/35
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matter 5 (1993} 6357-6376. Printed in the UK

The interaction of shocks and defects in Lennard-Jones
crystals

Lee Phillips, Robert S Sinkovits, Elaine S Oran and Jay P Boris

Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory,
Washingten, DC, USA
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Absiract. We examine, using computational molecular dynamics, shocks launched in two-
dimensional crystals by a flying plate. The interaction of the shock with various [attice defects
is observed, and is seen io create sites of rapidly growing, thermalized, hot fluid-like phases
included within the crystal lattice. We hypothesize that these fluid-like regions are the sites of the
initial chemical reactions leading 1o detonation in energetic materials, and that crystallographic
defects therefore control the sensitivity of single-crystal high explosives to shock-initiation. The
computations are carried out on the massively paralle] CM-200 using a parallelized version of
the MLG algorithm,

1. Imtroduction

This paper investigates, on the molecular scale, the propagation of vibrational disturbances
through various two-dimensional lattices, using the techniques of computational non-
equilibrium molecular dynamics. These disturbances will be referred to as ‘shocks’, as is
common in the literature, because, although they have a finite width and a definite structure,
they are thought to be the microscopic analogues of the travelling discontinuiiies that are
defined as shocks in the macroscopic domain of continsum mechanics.

The motivation behind the work reported in this paper is the desire to understand some
of the peculiar properties of the initiation and propagation of detonations in solid chemical
explosives. A detonation, as the term is ssually understoed in these contexts, is a physico-
chemical process with a characteristic structure [1]. This structure consists, in a sokld,
liquid or gas, of a shock wave or some other localized traveling disturbance, followed by
an associated reaction front, which separates material that has participated in a chemical
reaction from material that is not yet reacted. The association between these two traveling
interfaces, mediated by the ‘induction zone’ of (usually) compressed stressed unreacted
material between them, is a complex interdependence whose nature has been the subject of
many investigations, a few of which we shall discuss below. For now we should merely
point out that, on the one hand, the shock is the canse of the reaction front, for in its passage
it creates the conditions which lead to a particular series of reactions, while on the other
hand the exothermic reaction front maintains and accelerates the shock by supplying kinetic
and thermal energy.

In the fluid phases, those properties goveming the nature of the detonation process are
the chemical composition of the material along with its intensive thermodynamic variables
and, sometimes, the details of the method used to initiate the detonation. In a solid, even
when all of these quantities are held constant, there may still be significant variability in
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the responses of a series of samples. For example, in an experiment in which crystals
are exploded by dropping a weight on them, the variability may take the form of a wide
range of initial heights necessary for detonation in apparently identical samples. A possible
source of this variable response might be some unknown and uncontrolled variation in
the experimental conditions, presenting different samples with significantly different initial
conditions, combined with an extreme sensitivity to initial conditions in the system. But it
must be recognized that a sample of solid material, unlike a fluid, is characterized not
only by its chemical composition and its thermodynamic state. The particular spatial
arrangement of molecules constituting each sample makes them all unique. The fact that
the shock, solitary compressional wave or other disturbance taking part in the structure of
the detonation process is a mechanical mode of vibration supported by the molecular lattice,
whose nature is compietely dependent on the detailed structurc of that lattice, implies thai
the spatial arangement of molecules must influence the detonation process. This much is
uncontroversial. What may be more surprising is the suggestion [2] investigated here, that
certain minute changes in the molecular arrangement, involving the locations of just a few
molecules, may have a large, even determining, effect on a macroscopic detonation. This
suggestion gains plausibility if one considers that the actual thickness of the shock front may
be only a few lattice planes {3]. Therefore the transfer of kinetic energy from a molecule
to its neighbours in the direction of propagation involves the pasticipation of only a few
molecules (along the wavevector direction) in a particular vibrational mode at any one time.

One traditional theoretical approach to understanding detonations, and the initiation of a
detonation by a shock wave, involves a description in terms of thermodynamic variables that
are related by an equation of state for the material [1]. The passage of the shock heats the
material through adiabatic compression; if the compression is great enough, then the local
temperature will rise to a threshold required to initiate the chemical reactions, and a reaction
front will form behind the shock. However, for undesstanding the detailed microscopic
nature of detonations in a sokid, the traditional theories may not be appropriate. At the scale
of intermolecular distances, the usefulness of thermodynamic variables is problematic, and at
timescales shorter than nanoseconds, relations built upon the assumption of thermodynamic
equilibrium require special scrutiny (the rapid approach to thermal equilibrium under some
circumstances is discussed further in section 3.) We should point out that a description
based on classical mechanics, such as that employed here, must also be insufficient, but can
form the basis for more accurate quantum or semi-classical descriptions.

In this paper we examine the point of view, championed by Walker [4-7], that a shock
in a solid initiates detonation through the mechanical generation of scission forces on the
molecules comprising the solid, breaking chemical bonds, creating a distribution of free
radicals, and supplying the kinetic energy required to initiate reaction. In the light of this
picture of the detonation process, we investigate the interaction of the shock front with the
lattice structure, using numerical molecular dynamics. We are particularly interested in the
effects of certain types of lattice defects on the shock initiation mechanism. We include
no chemistry in our model; the ‘molecules’ are point particies interacting through Lennard-
Jones potentials. Hence our curmrent connection (o the detonation problem is the exploration
of how the conditions leading to the breaking of bonds and the subsequent formation of
new molecules are established. The following stage, of reaction and shock acceleration, will
be treated in a subsequent paper, which will report on simulations employing a chemistry
model.

There have been reported a number of interesting molecular dynamics calculations that
bear, in one way or another, on the problem of the shock initiation of detonations in
solids. Karo and co-workers [8] simulated a small lattice of approximately one hundred
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molecules arranged in a two-dimensional square-symmetric lattice, interacting through
either ‘endothermic’ Morse potentials or ‘exothermic’ polynomial potentials. A shock was
launched by simulating a fiying plate consisting of a smaller lattice of identical construction
to the main lattice. (This is quite similar to our method of shock launching in this paper.)
The main conclusions were that the shock was quite narrow on the atomic scale, that the
temperature of the lattice was unimportant, and that the free surface at the end of the
finite latiice was a crucial feature, as the shock’s interaction with this surface resulted in
a spalling off of a large chunk of the crystal. The behaviour subsequent to the spalling
depended on which potential was in use. With the endothermic potential there was little
interesting activity after the separation of the chunk, but with the exothermic potential a
violent reorganization of the lattice occurred,

While there is litile reason to question the reliability of the general character of the
results reported in these seminal papers, especially the importance of free surfaces, there
are several numerical issues that should be discussed. Unfortunately, issues of convergence
and accuracy are not treated in these references: conserved quantities are not mentioned,
nor are the methods of integration. Instead of physically faithful additive potentials, the
authors employ two different first- and second-neighbour potentials chosen to make the
initial lattice stable. In addition, as the lattice undergoes its natural distortion and molecules
acquire different sets of close neighbours, they are not allowed to interact with these new
neighbours. Instead, the original table of bonds is used throughout the calculation. As
the authors point out, this leads at times to molecules passing through each other without
interaction. (Indeed, this is a staristical possibility, albeit of low likelihood [9], with the
method we empioy, as discussed below.) One of our goals in the work reported here is to
discover which of these results survive the application of more modern numerical methods
applied to somewhat more realistic simulations.

Later [10], using the same numerical method, these authors studied a shock in a lattice
interrupted by a Iarge gap consisting of a region with no molecules. As before, they observed
spall from the free surface, with this time the spalled molecules reaching the second free
surface beyond the gap and launching a second shock. This was an attempt to simulate
efficiently the behaviour of a true void in a crystal, which would be surrounded by the
lattice on all sides and make up a small fraction of the lattice. As we discuss in section 3,
our simulations of small true voids included in a large lattice lead to somewhat different
conclusions from simulations employing a gap.

In more recent related work, these authors and others [11-13] embed a computational
surrogate for & polyatomic molecule into a simple host lattice, and show how the passage of
the shock pumps energy directly into some of the vibrational modes of the molecule. This
pumping could lead directly to bond scission in a real material, in a region that is definitely
not ergodic, and where no thermodynamic temperature can be defined.

Also relevant is the work of Tsai and Trevino [14] on a diatomic perfect crystal in the
form of a long filament with a small cross section. Exothermic bond breaking was simulated
through the use of bound and free compound Morse potentials, and the shock was formed
by heating the first six crystal planes. The initial temperature of their lattice was set at just
below the threshold of spontaneous dissociation; the heating caused dissociation directly,
the reaction spread by thermal conduction and drove a shock wave into the filament, They
kept track of the stresses and examined the partition of kinetic energy in the induction zone,
concluding that thermal equilibriom was not reached before dissociation took place. There
is no discussion of numerical accuracy or the treatment of distant neighbours, although
presumably the expediency of imposing a cutoff distance on the potentials, as adopted in a
previous paper [15], was used here as well.
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Several authors have demonstrated that the typical quasi-steady detonation structure
described above is predicted by molecular dynamics models, with the exothermic reactive
process modelled either by classical potentials acting between diatomic bonds [9, 16] or by
a more elahorate procedure that captures some of the features of the quantum chemical
processes involved [17-21]. All of these calculations involve perfect crystals, and although
some of them examine the effects of lattice geometry, shock direction relative to lattice
symmetry and so on, none of them deal with the action of crystallographic defects. A
recent exception is the work of Maffre and Peyrard [22], which deals with the ability of
a developed detonation structure to traverse grain boundaries, voids and other localized
defects. However, they do not deal with the effect of defects in the transition from a pure
shock to a detonation. Another exception is the recent work of Tsai [23].

2. Method

Our model system consists of an array of point particles, each with a specified initial
position and velocity vector, arranged in a two-dimensional space with either periodic or
free boundary conditions. The algorithms were chosen for their convenience and efficiency
on the compuler used, the Connection Machine CM-200, which consists of a large number
(4096, 8192 or 16384, depending on configuration) of processors, each with its own set of
locally stored data, updated in parallel according to instructions from a controfling ‘front-
end’ computer. Efficiency consists here largely of maximizing the proportion of code that
executes in parallel, which entails minimizing the manipulation of front-end (global) data
and maintaining careful control over the pattern of communication among processors.

Forces between particles were represented by Lennard-Jones potentials. The solution
of the complete N-body problem was not attempted; rather, the short-range nature of the
Lennard-Jones potential was exploited to Limit the distance over which interactions had to be
computed. The particle data were distributed onto a data structure known as the monotonic
Lagrangian grid (MLG) [24]. This is an object tracking and sorting technique where each
particle is associated with 3 pair of integer indices § and j, and the assignment is ordered such
that the coordinate x increases monotonically with i, and y increases monotonically with
J. Monotonicity was enforced after each update in particle positions by a parallel version
of the swapping routine described in [24]. The advantage of this method is that, at each
timestep, a particle’s neighbours can be identified quickly by cycling over a predetermined
region of {-j space, rather than by searching through coordinate space with an expensive
comparison of particle separations.

Each physical processor on the Connection Machine can be divided, in software, into as
many virtual processors as memory will allow. When we refer to a ‘processor” from here
on, this should be taken to mean “virtual processor’. One particle was associated with each
processor, which stored the particle’s position and velocity coordinates, as well as any other
information unique to that particle. We also stored a near-neighbours template {24] in each
processor; this is an array that stores the position information for each particle’s neighbours
in grid-index space. Once the template is filled, the total force vector acting on each particle
and the update in position is computed for all particles entirely in parallel, with no additional
interprocessor communication needed for the rest of the timestep. After each regeneration of
the MLG by the swapping routine, the template is rebuilt; thus each processor—particle always
has a locally stored updated list of the coordinates of its near neighbours. The use of the
MLG is one of several available efficient schemes for replacing a time-consuming search for
the spatially proximate neighbours of each particle at every timestep. However, as alluded
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to in the section 1, its use can lead occasionally (but infrequently) to the problem of missed
near neighbours [24], particles that are spatially close but not included in the neighbour
template. In our calculations near-misses can always be detected by direct inspection of
particle trajectories or by a failure of energy conservation or repeatability. In such cases
we redo the calculation with a larger template, Thus the template size is treated like the
computational timestep, both of which are adjusted to keep the calculations stable and
accurate.

The procedure for filling up the template at each timestep is an imporiani determinant of
the overall efficiency of the algorithm. Interprocessor communication between neighbouring
processors happens to be far more efficient than between more distant processors, so we fill
the template using a sequence of coordinated data moves between neighbouring processors
only. The total number of these parallel move operations is equal to one less than the
total number of elements in the template array; therefore the total time required to fill
the template depends on its size, not on the number of particles (assuming that the ratio
of virtnal processors to physical processors remains constant). Part of the communication
sequence is diagrammed schematically in figure 1,
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Figure 1. The two initial steps
in a sequence of parallel move
operations; the simplified. case
of a two-neighbour template is
shown as an ilfustrative example,
and the templates for six of the
patticles are included.  Each
3 | b e = — i e | 4= 4= 2  processor’s emplate is seeded at

» its centre with its own particle's
data; the arrows represent the
[' ‘_] copying of particle data from a
template entry to the appropriate
template entry in a neighbouring
ProCessor.
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As the studies described in this paper were being carried out, the computer hardware and
system software being used was evolving. Fortunately, only one of these changes needs to
be discussed here: initially, the Connection Machines that were used for these calculations
were equipped with floating-point accelerators that operated only on 32-bit numbers; more
recently, we were provided with 64-bit accelerators.

For reasonable efficiency, it is necessary to restrict the precision of floating point
numbers to the word size of the accelerator. Therefore, some of the resuits reported here
were performed with 32-bit arithmetic, some with 64-bit arithmetic, and some of the 32-
bit calculations were redone with 64-bits (double precision) when that became available,
The small differences we observed in particle data between the two precisions was not
significant enough to affect our conclusions. The chief advantage to the greater precision
will be for future calculations, which we will be able to carry out for longer times before
the accumulated errors become unacceptable,

We found that single-precision arithmetic limited the accuracy with which energy
can be conserved, and made the extra accuracy of higher-order time integration methods
superfluous, and their use needlessly time-consuming. Therefore some of the results reported
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here were calculated with the simple explicit Euler method. We were able to achieve
stability with this method using a reasonable timestep. The consequence of the limitation
of precision is that erergy is conserved only to approximately one per cent in the 32-bit
calculations. With double-precision arithmetic, it became advantageous to use a higher-
order integrator, We have used both the leapfrog method (described in several places, for
instance [25]) and the third-order Verlet formula [26] combined with a velocity correcior
described by Beeman [27]. The advantage of this method (described on p 138 of [27]) is
that the velocities do not have to be permanently stored, and need only be calculated when
they are required for a data dump or a check of the kinetic energy. Our algorithm with
these integrators can conserve energy to one part in 10%, in actual calculations.

We have performed calculations with three different system sizes, ‘small’ grids of 2'? or
213 molecules distributed among an equal number of physical processors, and a ‘large’ grid
of 2'% molecules distributed among 2 physical processors, which is the largest processor
set available to us. (Our original machine, with two banks of 2!? processors, was replaced
partway through this project with one of two banks of 2! processors,) This ‘large’ system
of particles is not very large by current standards of molecular dynamics simulation, but is
adequate to demonstrate the physical processes of interest o us.

In both cases each molecule was asgigned its own virtual processor. All else being
equal, the large grid should take approximately twice as long to simulate as the small grids,
because it is the ratio of viral to physical processors that is significant. On the small
grids, with five neighbours in the template in each direction, the calculation took 0.67s
per timestep. On the large grid, a five-neighbour calculation took 1.0s per timestep and a
seven-neighbour calculation took 2.0s per timestep. We have verified several of our runs
with equivalent calculations on the NRL Cray X-MP, using a well vectorized code. With
4096 molecules, a five-ncighbour template takes 2-2.4 s per timestep; with Jarger system
sizes, the disparity between the two architectures can be expected to grow dramatically [28).

3. Results

It is difficult to compare directly the various molecuiar dynamics simulations that can be
found in the literanure, due to the varying sets of units employed by different authors, along
with differences in potential parameters, lattice spacing, initial conditions and so on, each
of which can have a non-obvious effect on the evolution of the system. Close comtparison
becomes impossible when not enough parameters are supplied in order to characterize the
dynamics of the system. In certain fields it is commaon to avoid these problems by describing
the physical system with a set of dimensionless numbers. Although the large number
of parameters characterizing a molecular system makes a simple resort to dimensionless
numbers impossible, it may be useful 1o introduce one such mamber, which can be used
organize the results concerning the type of molecular dynamics configuration used in this
paper.

We have an array of molecules with forces between them derived from a Lennard-Jones
potential

¢ = 4el(o/r)? - (o/r)f]

so the force, F, is given by
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by Newton’s equation of motion. In the above two equations r is the distance from
the molecule, m is the molecular mass, 1 is time, and ¢ and ¢ are the two parameters
characterizing the potential. In order to make the equation of motion dimensionless, we
must introduce scales appropriate to a system excited by a flying plate: 4 is the interparticle
spacing, V, is the plate velocity, T = d/V,, u is the particle mass, and I = ud”/7* is the
energy unit.

After making the substititions

r—r'd € —>¢'D t >t m-—>mu o —o'd
and removing the primes from the now dimensionless variables, the equation of motion

becomes

d2r

L1202/ + 601y =m0
where
Vol
€

emerges as a new dimensionlcss number, apparently relating the kinetic energy of the
impacting molecnles to the binding energy of the intermolecular potential.

In all of the calculations presented here, € = 0.0223, ¢ = 0.891, V, =2.0,4 = 1.0, and
1 =40, giving £ = 727.3. It may help put things into context for some readers if we scale
our variables to the values appropriate to solid argon, a substance commonly discussed. In
this case the plate velocity scales to 4258ms™, one time unit is 0.88 x 10~!*s, and one
distance unit is 3.8 A. From here on we shall use the dimensionless units.

Figure 2 shows a sequence of molecular configurations as a plate-launched shock
encounters a pair of voids in a system with periodic boundaries transverse to the shock,
producing a great deal of disorder. The same initial conditions in a system without the
voids lead to the shock traversing the crystal intact and leaving it undismrbed. However,
this behaviour is observed in the inherently unstable square lattice used for this run only at
near-zero initial temperatures, in contrast with the stable hexagonal lattice used in other runs
described below. We sec here that the voids disturb the coherency of the shock, transforming
its organized x-directed (horizontal) motions into a thermalized two-dimensional (x—y)
motion; beyond the defects, the shock continues as several disconnected pieces.

The progress of the shock can perhaps be more clearly visualized in figure 3, showing
profiles of the horizontal velocity along different lines through the crystal. That these
disordered regions are actually ‘thermalized’ can be seen by looking at the speed distribution
of the molecules in the crystal. Figure 4 is a series of speed histograms corresponding to
the calculation illustrated in figure 2; superimposed on each histogram plot is the two-
dimensional Maxwell-Boltzman distribution with a temperature derived from the average
kinetic energy of all the particles. At early times we can see the speed distribution dominated
by two values, the near-zero speed of the particles locked into the near-zero temperature
lattice configuration, and the highest speed, equal to the plate velocity. As time advances
we can see the velocity distribution filling in, but remaining non-Maxwellian, In the last
frame of the figure we have plotted the distribution of a subset of the system at ¢ = 15 (the
configuration at this time is shown in figure 14), the subset consisting of the particles in
the chaotic region delimited by x = 15 and x = 42. The superimposed Maxwell-Boltzman
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Figure 2. Particle positions for 4k particles in two dimensions, with periodic boundary conditions
in the y direction. A ‘fying plate’ impinges from the left, and has just made contact at r = 3;
the resulting shock, propagating in the x direction, interacts with two rectangular voids.
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curve corresponds to the kinetic temperature of the subset of particles under consideration;
clearly this region of particles has rapidly attained a thermal equilibrium, indicating that
the collisionality in the chaotic region is high. The creation of hot spots at the site of
voids in a lattice under compression has also been seen in recent simulations by Tsai [23].
These disordered regions also have the property of being at a slightly higher density than
the equilibrium laitice, as can be seen in the density plot of figure 6.

A similar calculation can be seen in figure 5, with the square lattice replaced by a
hexagonal lattice. In this case, also, the small void has been replaced by a single vacancy.
We can see here that even in a lattice geomelry with a higher binding energy, and with, unlike
the square lattice, non-linear stability against moderate temperatures, a small imperfection
creates a large disruption.

It is important to keep in mind that the ‘voids’ (and hot spots) discussed here, and in
related papers, are at a vastly different length scale from the voids (and hot spots) that can
currently be observed in experiments, which are typically in the micron range, which is a
huge expanse for a molecular dynamics calculation. As simulation length scales become
larger, and laboratory observations become more minute, perhaps eventually there will be
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Figure 4.  Velodity distribution histograms with
superimposed equilibdum distributions, for the same
calculation illustrated in figure 2. Parts (@)}-<{d) illustrate
the filling-m of the initially doubly peaked distribution
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(b) Pusn

Figure 5. A void in a hexagonal lattice interacting with a
shock launched by a flying plate.

Figure 6, Smoothed density plot corresponding to the same
calculation illustrated in figure 2, at ¢+ = 13.5. Increasing
brightness indicates increasing density. The three bright
patches near the right-hand side of the figure comespond to
the compression at the location of the void-interrupted shock.

a closer connection between molecular dynamics and experiments,

The interaction of a shock front with a mass defect in square and hexagonal lattices can
be seen in figures 7 and 8, both showing the effect of the inclusion of a molecule with a
50% mass excess. The effects are similar to but weaker than those caused by voids.

We have performed a series of experiments on systems identical to the ones shown in
the figures, but at various temperatures and intermolecular potential well depths. At very
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Figure 7. A mass defect in a square lattice interacting with
a shock launched by a fAying plate. The black square is a
5 molecule with a mass excess of 50%.

small temperatures the perfect square lattice becomes unstable when struck by the plate, and
begins to dissociate. This is true even if the potential well depth is increased by a factor of
45, The hexagonal lattice, however, is stable to impact by the flying plate over a wide range
of temperatures, although at higher temperatures the shock front is less sharply defined. The
effects of the various types of hexagonal lattice defects, and their relative importance, is
not affected by temperature, but is sirongly dependent on the intermolecular potential well
depth. For a given shock strength and defect type, it appears that it is possible to increase
the well depth to a point at which the iattice remains stable.

It is useful 10 quantify the concept of the strength of the effect of different types of lattice
defects or their efficacy in disrupting the crystal when interacting with a shock. For this
purpose we have defined two “disruption factors’, to be used with the two lattice symmetries.
The disruption factors shouid be defined in such a way that the elastic deformation of the
lattice due to the shock itself does not make a contribution, Therefore the disruption factors
will be zero for the case of a shock traversing a defect-free crystal that remains intact,

We can define disruption factors that satisfy these criteria as follows. For the square
lattice the angular positions of the four nearest neighbours (% 2 3 4} are found. The disruption
factor, x, for each particle is defined as

4
x=Z]sin8;cos9.-|

i=]
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where the summation is over near neighbours. For a compression or rarefaction of the
lattice due to the propagation of a shock along one of the principal crystal axes, the angular
positions of the near neighbours should remain 0, £7/2, and & resulting in x = 0.

The hexagonal lattice disruption factor must be defined in a slightly different manner.
The angular positions of the six near neighbours of each particle (61, ¢) change as the shock
propagates through the lattice. In this case the angular positions of the six near neighbours
are first found. The neighbours in the lower half-plane are reflected into the upper half-
plane. The near neighbours are then sorted into order of increasing angle. The disruption
factor for the hexagonal lattice is defined as

x = sin 6y + sin{@; — &) + sin(f5 — B4} + sin Gs.

In the case of a shock passing through a hexagonal lattice causing only a compression or
rarefaction along the shock direction, 8; and 8 should remain 0 and s, respectively. The
angles f; and ¢, shouid be equal and 85 and ¢, should be equal. As in the square latiice, a
zero disruption is calculated.

The total disruption of the lattice is calculated by summing the per-particle disruption
factor over all particles. The values of the total distuption correlate well with the apparent
disruption found by visual inspection of the particle positions. Figures 9 and 10 display
x as a function of time for an assorement of crystal defects, for the square and hexagonal
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lattices respectively. The greater importance of voids over mass defects is obvious, as is the
unstable growth of the disordered region after the passage of the shock. Figure 9 also shows
that the fastest growing disruption factor is found for an interstitial inclusion in a square
lattice. The spatial configuration for such a system is shown in figure 11. The closer packed
hexagonal lattice does not provide an equilibrium position for an interstitial inciusion.

800

------ m* = 1.5
600~ |—- m* = 1.125
cee m* = 0.875 §00 -
— m" = 1.0625
wee m* = 0.9378
—
%400 intarstitinl %{400 -

200 200

0

n -

0

Figure 9. The disruption factor (see text) as a function  Figure 16. The disruption factor as a function of time,
of time, for several types of defects in a square lattice.  for mass defects of several values and for a vacancy in
& hexagonal lattice,

Another useful diagnostic summary of the state of the system is a histogram distribution
of the near-neighbour angular positions, such as that shown in figure 12. This figure shows
the evolution of the angular distribution for the case of a vacancy in a square laftice.
The additional peaks which develop in the histogram distributions indicate that the lattice
is beginning to locally undergo a transition from a square io a hexagonal state. For a
hexagonal lattice formed by the displacement of every other column of atoms perpendicular
to the shock direction together with a compression along the shock direction, the near-
neighbour angular positions should be +n/6, L /2 and £57/6. The peaks are not found
exactly at these angles since the lattice has a square structure a short distance from the
region of disturbance, resulting in a distorted hexagonal state,

Figure 13 shows a calculation similar to that shown in figure 2, but in a y-periodic
system of 32k molecules, with a distribution of voids whose positions, shapes and sizes
{ranging from single-site vacancies to voids of nine molecules) are determined by a random
nomber generator. This is a first attempt at simulating a system approximating a part of
a real crystal, with its natural distribution of defects (although by necessity only including
molecular-scale features). The basic process shown in figure 2 is repeated here: each void,
including even the single-site vacancies, becomes the seed of a rapidly growing region of
thermalized disorder, which causes a break in the shock front due to the work done on
the voids. The shock becomes more tenuous as its organized x-momentum is equilibrated
and, in the absence of energy available from chemical reactions, eventyally dies out. In the
second half of the figure, at ¢+ = 11, the leading edge of the remains of the shock front can

be seen at x = 50. Note that for clarity only a portion of the system, which extends to
x = 260, is shown.
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The spherically symmetric potential leads to two possible periodic equilibrium lattice
symimetries: square and hexagonal. As can be seen in figure 14, the agitation created by
the void collapse has provided a section of the lattice the opportunity to relax to the other
periodic state available to it: we see here and in various other runs the emergence of a
localized hexagonal region. We use the term ‘relax’ above becanse the hexagonal state is
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actually of slightly smaller potential energy. Accompanying this relaxation, therefore, must
be the generation of some extra kinetic energy. A somewhat similar shock-induced phase
transition was shown in [10], where a potential with twa minima acted between molecules.

Figure 13. Particle positions in a
32k particle system, with a random
distribution of voids. A flying plate
has launched a shock from the left.
Only a portion (= 7.5k particles) of
X the total sysiem is shown.

PARTICLE PGSITIONS AT TIME = |.S00£+01

Figure 14. A frame from a later time, ¢ = 15,
in the calculation illustrated in figure 2, showing the
emergence of an hexagonal phase embedded in the
predominant square-symmetric crystal. A box has been
drawn around the hexagonal region.

The assertion has been made [10] that in order to understand the shock-void interaction it
is not necessary to place the void interior to the crystal but, in the interests of computationat
efficiency (which in this context means reducing the number of molecules that need to be
tracked), it is sufficient to examine the interaction of the shock with a gap in the lattice.
In figure 15 we show the results of a calculation in every way identical with that shown
in figure 2, except that the two voids in figure 2 have been replaced with a gap extending
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across the entire crystal; the gap begins at the same x position as the leading edges of
the voids, and has the same width, We can see from figure 15 that the shock succeeds in
traversing the gap while maintaining its coherency, and proceeds down the lattice, leaving
it undisturbed. Thus we see an essential physical difference between a gap and an included
void: the presence of neighbour molecules transverse 1o the direction of progress of the
shock causes energy to be removed from the shock and distributed among greater degrees
of freedom, ieading to a thermalized region. A related gbservation has recently been made
by Maffre and Peyrard [22], who demonstrated the ability of a shock-reaction front structure
0 raverse a void in a lattice.

In addition to various systems of voids, we have simulated the encounter of a shock
with a type of extended defect resembling a grain boundary; the evolution of the system
is shown in figure 16, which contains a sequence of plois of the particle positions in a
y-periodic system. As before, a shock was launched by a flying plate travelling to the right
with V, = 2, At r = 4, the shock is beginning its raversal to the right, and the grain
boundary can be seen initially at x =24.5. At ¢ =7, the shock is passing over the defect,
which is compressed skghtly and, due to the compression of neighbouring lattice planes,
has been displaced slightly to x = 26. At r = 10 the shock has passed through the defect,
leaving it and the surrounding fattice undisturbed, except for coherent displacements in the
x direction, which place the defect at x = 27, Counting from the left, the grain boundary
separates the 20th from the 21st lattice plane, and it does not shift relative to the lattice,
It seems likely, if these two-dimensional results are at all indicative of behaviour in three
dimensions, that grain boundaries are of comparatively litile importance in causing a lattice
disruption, compared with voids.

There can be observed in some of the position plots a slight lack of symmetry in particle
configurations where perfect symmetry might be expected, even before symmetry breaking
effects have a chance to propagate in from the boundaries. The two causes for this are
the small random thermal motions in the initiai conditions, which are always present to
some extent and are never symmetric, and the accumnulated roundoff errors in the floating
point arithmetic, which after a few thousand timesteps may cause a detectable breaking of
symmetry even at Zero temperature.

4, Conclusions

When a shock, sufficiently weak that it is able to traverse a perfect crystal without
permanently disturbing the configuration of its lattice, encounters a void in the lattice, the
void becomes the site of a rapidly growing thermalized hot fluid-like phase characterized
by a high density and a high degree of collisionality. These characteristics should be
conducive to the onset of chemical reactions and, we suspect, it is in these regions that
the reactions leading to the development of a shock-detonation structure bhegin, It seems
probabile, therefore, that the void distribution in the lattice is an important factor controlling
the sensitivity to shock-initiation and the character of the subsequent detonation front
development. A perfect crystal should be relatively insensitive. It is possible that in three
dimensions, other types of defects will be seen to be equally important, but that will be
treated in a subsequent paper.

As discussed above, in order to concentrate on the narrowly defined problem of shocks
and defects in molecular crystals, with as few complications as possible, we have deferred
inciuding a model of the chemical bond and simulated the behaviour of moderately large
systems of indivisible molecules with spherically symmetrical potentials, This approach
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has the advantage that our results are independent of the details of any particular model
of detonation chemistry or intramolecular behaviour, several of which are referenced in
section 1.

Although we have been able to resolve several issues concerning the importance of
defects, there are some remaining ambiguities that will not be resolved until we include
polyatomic molecules in the simulations. These have their counterpart in the uncertainties
plaguing our knowledge of the bond scission process in a shocked crystal lattice, If the
polyatomic bonds are broken in the shocked region, due to direct energy transfer from the
shock 1o vibrational modes of the molecules, then the scission forces discossed above have
little relevance, because they occur in the disordered regions behind the shock, In this
case the importance of the defects is in the thermalization and mixing, which will provide
enhanced oppornities for the free radicals, created in the shocked region, to recombine.
Of particular relevance here is the observation that thermal equilibrium is established in the
disordered region close behind the shock, on a very fast timescale, implying that equilibrium
equations of state may be relevant after all to the detonation process. If the chemical bonds
are not broken directly by the passing shock, then the scission forces may be responsible
for bond stretching and breaking in the disordered region, where conditions prevail that will
enhance the subsequent reactivity. The truth is that neither computational nor theoretical
work to date is sufficient to resolve these uncertainties. We hope that these questions can
be addressed in the next generation of simulations, involving both defects and chemical
reactions in polyatomic crystal lattices large enough to capture their interaction.

Acknowledgments

This work has benefited materially through discussions with Sam Lambrakos, Sam Trevino
and Donald Tsai. It was supported by the Physics Division of the Office of Naval Research
and the Naval Research Laboratory. One of us (RSS) was supporied by an Office of Naval
Technology postdoctoral fellowship.



6376 L Phillips et al

References

{1]
[2]
(3]
(4]
(3]
[6]
7]
(8]
9

[10]

(1]

(2]
{13]

f14]
£15]
(16)
(17)
[18]

[19]
{20
[21]
[22]
231
[24]
[25]
[25]
[27]
[28]

Fickett W and Davis W C 1979 Detonation (Beskeley, CA: University of Califomia Press)

Sandusky et al 1989 Proc. Stk Int. Symp. on Detonation p 975

Dremin A N and Klimenko V Yu 1981 Prog. Astro. Aero. 75 233

Walker F E 1988 LNL Report UCRL-53860

Walker F E and Wasley R I 1976 Propellants and Explosives 173

Walker F E 1982 Propeliants, Explosives and Pyrotechnics 72

Walker F E 1988 J. Appl. Phys. 63 5548

Karo A M, Handy J R and Walker F E 1978 Acta Astronautica 5 1041

Lambrakos § G, Oran E S, Boris J P and Guirguis R H 1987 Proc. Cenf. on Shock Waves in Condensed
Matter p 499

Hardy J R, Karo A M and Walker F E 1981 Gasdynamics of detonations and explosions {vol 75, Progress
in Astronawtics and Aeronautics) ed ) Raymond Bowen et al (American Institute of Aeronautics and
Astronautics, Inc.) pp 209-23

Karo A M, Walker F E, DeBoni T M and Hardy J R 1983 Dynamics of Shock Waves, Explosions, and
Detonations (vol 94, Progress in Astronautics and Aeronautics) ed J Raymond Bowen ef al (American
Institute of Aeronautics and Astronautics, Inc.} pp 405-15

Karo A M and Hardy J R 1986 Int. J. Quannum Chem. 20 763

Karo A M, Hardy J R and Mehiman M H 1986 Proc. 15th Int. Symp. on Shock Waves and Tubes ed D
Bershader and R Hanson p 885

Tsai D H and Trevino 8 F 1984 J, Chern. Phys. 81 5636

Tsai D H and Trevino S F 1983 J. Chem. Phys. 79 1684

Peyrard M, Odiot 8, Oran E, Boris J and Schaur J 1986 Phys. Rev. B 33 2350

Brenner D W and White C T 1991 Int. J. Quantum Chem.: Quantum Chem. Sym. 23 333

Brenner D W, Elert M L and White C T 1989 Proc. Topical Conf. on Shock Compression of Condensed
Marter p 263

Elert M L, Deaven D M, Brenner D W and White C T 1989 Phys. Rev. B 39 1453

Lambrakos § G, Peyrard M, Oran E § and Boris J P 1990 Pkys. Rev. B 39 993

Lambrakos 8 G and Peyrard M 1990 J. Cherm, Phys. 93 4329

Maffre P and Peyrard M 1992 Phys. Rev. B 45 9551

Taai D H 1991 J. Chem. Phys. 95 7437

Lambrakos S G and Boris ] P 1987 J. Comput. Phys. 73 183

Memon M K, Hockney R W and Mitra 8§ 1981 J. Comput. Phys. 43 345

Verlet L 1967 PR 15% 98

Beeman D 1976 J. Comput. Phys, 20 130

Murray B G J P T, Bash P A and Karplus M 1988 Thinking Machines Technical Report CB88-3



